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PLASMA Motivation

NASA needs
• To solve large class of problems relevant to space exploration
• Requires wide variety of planning algorithms
• Requires advanced inference for many classes of constraints
• Requires integration into a wide variety of applications/architectures

Technology Components
• A powerful modeling language – to describe the problem domain
• A robust and powerful Plan Database – enforce plan consistency and infer

consequences of plan modifications
• A Planner Application Framework – support integration

Benefits
• Increase capabilities of mission and research applications
• Reduce development cost and risk
• Encourage technology transfer through common infrastructure
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A Variety of Uses
Applications

Missions
• DS1: RAX – Remote Agent Experiment (original version of technology) ‘99
• Life in the Artacama (LITA) Desert Rover ‘04
• MER - Mars Exploration Rover Science Planning Tool ‘03-04

Mission-oriented research
• Earth-observing satellite scheduling project (EOS)
• SOFIA flight scheduling project (SOFIA)
• Contingent Planning for Mars rover operations
• Personal Satellite Assistant (PSA)
• Spoken Interface Prototype for PSA
• Space Interferometry testbed (SIM)

Research
• Intelligent Deployable Execution Agent (IDEA)
• LORAX Rover Power budgeting
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Abstract Application Architecture
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Plan Representation

Flexible Time Intervals have Flexible Start, End and Duration
Parameterized Predicates describe actions and states
Token is a Parameterized Predicate over a Flexible Time Interval
Constraints defined between Tokens, Time Points, Parameters
Timelines enforce temporal mutual exclusion over an object
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Expand takePic subgoals
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Plan Database: how it works

A  Domain Model:
• defines parts of the plan
• defines necessary relationships among them for valid plans

The Plan Database :
• maintains current plan
• maintains mapping between plan and constraint network
• supports plan modification and constraint inference

The Planner:
• checks status of current plan
• decides how to modify the plan
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Sample Model

Camera::TakePic{
 // Attitude must be constant throughout
 contained_by(Attitude.pointAt at);
 eq(at.location, rock);

// Engine must be off throughout
contained_by(Engine.off o);

 // Preceded by readying operation
 met_by(Ready r);

 // Succeded by stowing the instrument
 meets(Stow c);
}
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Handling Heterogeneous
Constraints

Distinguished constraint classes
Generic, Temporal, Equivalence classes, Resources

Rules engine
Adds and removes constraints

Triggering propagation via events
Scheduling of execution can be defined by user

Choose next
 constraint

Enforce 
Constraint

Eq. Class 1

Resource 2

STN 3Eq. Class 2

Resource 4 STN 7

Less-Than 2

Assign
VariableAdd Constraint

STN 7

Scheduler
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PLASMA Customizability

Create new constraints, variables, tokens, objects
Concept hierarchy supports customization (e.g. resource extends object)

Change rules governing legal plans
e.g. Temporal flexibility vs timestamped sequences

Change order of domain rule enforcement
e.g. Before or after tokens inserted on objects

Change scheduling constraint enforcement
e.g. Resources before or after Temporal

Customize planner search
e.g. flaws and decision management

Change event model and event handling
Custom Logging
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Example: Rover Rock Sampling
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Task for Spirit this next Sol:
1. Start at Lander. 
2. Take Rock Sample at (3, 9) 
3. Communicate: Direct or via Lander
4. Battery charge initially 1000

Path 1: -2000

Path 2: -1500Path 3: -400

Direct: -600
Lander: -40
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Objects with and without Tokens

Rock name(rock4)

x(3)

y(9)

Object Member Variables (Static w.r.t. Time)

Navigator

Object

At(lander) Going(lander, rock4) At(rock4)

Member Variables (Variable w.r.t. Time)

Instrument

Object

Stowed

Member Variables (Variable w.r.t. Time)

Unstow Place(rock4) TakeSample(rock4)
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Object - Token Relationships

Object

Object

Token

Token

canBeAssigned (m:n)

isAssigned (1:n)
hasA (1: n)

supports (1: n)
parentOf (1: n)

canBeMerged(m:n)

Constrained
Variable

Constraint

hasA (1: n) hasA (1: [4, n])

constrainedBy (m: n)
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Token State Transition Model
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Flaw/Decision Model

Variable Decisions (resolve unbound variables):
•Specify (var, val) / Reset (var)

Token Decisions (resolve inactive tokens):
• Activate(Token t) / Deactivate(Token t)
• Merge (Token t1, Token t2) / Split(Token t1)
• Reject(Token t1) / Reinstate (Token t1)

Object Decisions (resolve when Object hasTokensToOrder):
• Constrain(Object o, Token t) / Free(Token t)
• Constrain(Object o, Token t1, Token t2) / Free(Token t1)
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PLASMA
Framework & Components
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